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Abstract
We present a real space renormalization group scheme for the problem of
random walks in a random environment on a strip, which includes the one-
dimensional random walk in a random environment with bounded non-nearest-
neighbour jumps. We show that the model renormalizes to an effective
one-dimensional random walk with nearest-neighbour jumps and conclude
that Sinai scaling is valid in the recurrent case, while in the sub-linear transient
phase, the displacement grows as a power of the time.

PACS numbers: 05.40.Fb, 05.10.Cc, 02.50.Ey

1. Introduction

The problem of random walks in a random environment (RWRE) has a long history and since
the early results in the 1970s [1], a vast amount of informations have accumulated; for a recent
review see [2]. The RWRE can be regarded as a toy model of disordered systems, for which
exact results are available and which, due to its simple formulation, became a fundamental
model in various fields such as transport processes or statistical mechanics of magnetic systems
[3]. Most works concern the RWRE with nearest-neighbour jumps on the integers, for which
a more or less complete picture is at our disposal. Beside rigorous results [1, 4, 5], this model
was also studied by a strong disorder renormalization group (SDRG) method [6] which is
closely related to that originally developed for disordered spin models [7]. This method, in
which the small barriers of the energy landscape are successively eliminated, yields exact
results for the asymptotical dynamics, among others the scaling of the typical displacement x
of the walker with time t in the recurrent case: x ∼ (ln t)2, in accordance with Sinai’s theorem
[4].

In higher dimensions, even on quasi-one-dimensional lattices or in case of non-nearest-
neighbour jumps, the understanding of RWRE is at present far from complete. For the one-
dimensional (1D) RWRE with bounded non-nearest-neighbour jumps, criteria for recurrence
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and transience are known [8] and for some special cases Sinai scaling was proven [9]. This
model arises also in the context of disordered dynamical systems [10]. For the RWRE on
strips of finite width, which incorporates among others the former model and the persistent
RWRE [11], recurrence and transience criteria were obtained in [12].

The aim of this paper is to propose an exact SDRG scheme for the RWRE on a strip. A
necessary condition for the analytical tractability by the SDRG method is that the topology
of the underlying lattice is invariant under the transformation, which generally does not hold
apart from 1D. As in our approach complete layers of lattice sites are decimated, the topology
of the network of transitions is preserved. Contrary to the 1D RWRE, the energy landscape
does not exist in general, therefore we keep track of the transformation of jump rates in the
same spirit as it was done for the closely related 1D zero-range process [13]. We shall show
that in the fixed point, the transformation of relevant variables is identical to that of the 1D
RWRE with nearest-neighbour jumps, implying among others that Sinai scaling holds for
strips of finite width in the recurrent case.

The rest of the paper is organised as follows. In section 2, the problem to be studied is
defined in details. In section 3, the renormalization group (RG) transformation is introduced
and the RG equations are analysed in the recurrent case, as well as in the zero-velocity transient
phase. Finally, the results are discussed in section 4.

2. Formulation of the problem

We consider a finite strip S = {1, . . . , L} × {1, . . . , m} of length L and width m, and call the
set of sites (n, i) ∈ S with fixed n and i = 1, . . . , m the nth layer. We define on this lattice a
continuous-time random walk by the following (non-negative) transition rates for 1 � n � L:

T (z1, z2) =

⎧⎪⎪⎨
⎪⎪⎩

Pn(i, j) if z1 = (n, i), z2 = (n + 1, j)

Qn(i, j) if z1 = (n, i), z2 = (n − 1, j)

Rn(i, j) if z1 = (n, i), z2 = (n, j), i �= j

0 otherwise.

Here and in the following, the formally appearing index (0, j) [(L + 1, j)] is meant to refer to
site (L, j) [(1, j)], i.e. the strip is periodic in the first coordinate. The m × m matrix Pn(Qn)

contains the jump rates from the nth layer to the adjacent layer on the right(left), while the
matrix Rn with diagonal elements Rn(i, i) := −∑

j �=i Rn(i, j) contains the intra-layer jump
rates. Besides, we define the m × m matrix Sn, which will be useful in later calculations by
Sn(i, j) := −Rn(i, j), i �= j , while the diagonal elements are fixed by

(Pn + Qn − Sn)1 = 0, (1)

where 1(0) is a column vector with all components 1(0). For the sequence of triples of
matrixes, {(Pn,Qn,Rn)}, which defines the random environment, we impose at this point the
only condition that it must be connected in the sense that every site is reachable from every other
site through sequences of consecutive transitions with positive rates. The probability that the
walker resides on site (n, i) in the stationary state is denoted by πn(i) and these are normalized
as

∑
(n,i) πn(i) = 1. Following [12], we introduce the row vectors πn = (πn(i))1�i�m and

for a fixed environment, write the system of linear equations that the stationary probabilities
satisfy in the form

πnSn = πn−1Pn−1 + πn+1Qn+1, 1 � n � L. (2)

Although, we started from a continuous-time random walk, the same equations can be
written for a discrete-time jump process with transition probabilities obtained by rescaling
the transition rates by max(n,i) Sn(i, i).
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3. Renormalization group transformation

The elementary step of the renormalization group method we apply is the elimination of the
kth layer, such that the walker then jumps from the k −1st layer directly to the k + 1st one with
transition rates P̃k−1(i, j) and from the k + 1st layer to the k − 1st one with rates Q̃k+1(i, j).
We choose the matrices P̃k−1 and Q̃k+1 in such a way that the remaining L − 1 equations
in (2) are fulfilled by the unchanged vectors πn, n �= k. Eliminating πk in equation (2), it
turns out that also the matrices Sk−1 and Sk+1 must be changed, and we have the following
transformation rules:

P̃k−1 = Pk−1S
−1
k Pk (3)

Q̃k+1 = Qk+1S
−1
k Qk (4)

S̃k−1 = Sk−1 − Pk−1S
−1
k Qk (5)

S̃k+1 = Sk+1 − Qk+1S
−1
k Pk. (6)

All other matrices remain unchanged. The matrix Sn has the following important property:

S−1
n � 0, (7)

which is meant to hold for the matrix elements. This can be proven as follows. We introduce
the notation Dm ≡ det Sn where the index m refers to the order of the matrix. The non-diagonal
elements of Sn are nonpositive, while Sn(i, i) ≡ ∑

j [Pn(i, j) + Qn(i, j)] +
∑

j �=i Rn(i, j) > 0
for 1 � i � m since by assumption, the environment is connected. Regarding Dm as a function
of the variables εi := ∑

j Sn(i, j) = ∑
j [Pn(i, j) + Qn(i, j)], i.e. Dm = Dm(ε1, . . . , εm), it

is clear that Dm(0, . . . , 0) = 0 and ∂Dm

∂εi
= D

(i)
m−1 where D

(i)
m−1 is the determinant of the matrix

S(i)
n obtained from Sn by deleting the ith row and column. Now, the relation Dm > 0 can be

shown by induction. Obviously, D1 > 1. Assuming that D
(i)
m−1 = ∂Dm

∂εi
> 0 for 1 � i � m

and taking into account that connectedness implies
∑

i εi > 0, it follows that Dm > 0. Thus
det Sn, as well as the diagonal elements of S−1

n are positive. Using this result, the relations
S−1

n (i, j) � 0 for i �= j can be shown again by induction in a straightforward way.
Relation (7) and equation (5) imply that �Sk−1 ≡ S̃k−1 − Sk−1 = −Pk−1S

−1
k Qk � 0. In

components,

�Rk−1(i, j) � 0 (i �= j), �Sk−1(i, i) � 0. (8)

From these relations we obtain
∑

j �Pk−1(i, j) � 0, where we have used �Qk−1 = 0.
Similarly, we obtain: �Rk+1(i, j) � 0, i �= j and

∑
j �Qk+1(i, j) � 0. Thus, the intra-layer

transition rates are non-decreasing, while the sum of rates of inter-layer jumps starting from a
given site is non-increasing under a renormalization step.

Let us introduce the quantity �n := 1
/∥∥S−1

n

∥∥, where the matrix norm ‖·‖ is defined as
‖A‖ := maxi

∑
j |A(i, j)|. From equation (5), we have S̃−1

k−1 = S−1
k−1 + S−1

k−1Pk−1S
−1
k QkS̃

−1
k−1.

As relation (7) is valid also for the renormalized matrices, i.e. S̃−1
k−1, S̃

−1
k+1 � 0, both terms on

the right-hand side are non-negative, therefore
∥∥S̃−1

k−1

∥∥ = ∥∥S−1
k−1 + S−1

k−1Pk−1S
−1
k QkS̃

−1
k−1

∥∥ �∥∥S−1
k−1

∥∥, or, equivalently, �̃k−1 � �k−1. By a similar calculation we obtain that �̃k+1 � �k+1.
The RG procedure for finite L is defined as follows. The layer with the actually largest �n

is decimated, which results in a RWRE on a one layer shorter strip with effective rates given
by equations (3)–(6) and the remaining πn unchanged. This step is then iterated until a single
layer is left. The variable defined by � := maxn �n, where n runs through the set of indices of
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non-decimated (or active) layers, decreases monotonously in the course of the procedure. For
the special case m = 1 (1D), �k = Qk(1, 1) + Pk(1, 1) and the transformation rules reduce to

P̃k−1(1, 1) = Pk−1(1, 1)Pk(1, 1)

Qk(1, 1) + Pk(1, 1)
, Q̃k+1(1, 1) = Qk+1(1, 1)Qk(1, 1)

Qk(1, 1) + Pk(1, 1)
, (9)

which have already been obtained in the context of the zero-range process [13].
The procedure described so far applies to any connected environment; as a trivial case

even to the homogeneous environment. From now on we assume that the triples (Pn,Qn,Rn)

are independent, identically distributed random variables. We consider an infinite sequence of
triples {(Pn,Qn,Rn)} and, in the usual continuum formulation [15] of the above RG procedure,
we are interested in the asymptotic scaling of � with the length scale ξ� that is given by the
inverse of the number density c� of active layers: ξ� ≡ 1/c�.

3.1. Recurrent case

First, we focus on the case of transition rate distributions for which the random walk is
recurrent in almost every environment. The question of recurrence is in general non-trivial for
m > 1 [8, 12]; nevertheless, a sufficient condition of recurrence is that the distribution of jump
rates is invariant under the interchange of Pn and Qn [14]. Furthermore, we do not deal with
special environments which lead to normal diffusive behaviour (e.g. the case Pn = Qn for all
n). Instead, we consider less restricted situations: for instance, distributions where Pn and Qn

are independent. In this case, the above special environments form only a zero-measure set in
the limit L → ∞.

As a first step, we investigate the limits of transition rates when the density of active
layers c� goes to zero. Consider a site (n, i) in an active layer in an arbitrary stadium of the
RG procedure and assume that the initial matrix elements Sn(i, j) were renormalized to some
S̃n(i, j) � Sn(i, j). Then we can write

∑
j �=i R̃n(i, j) �

∑
j �=i R̃n(i, j) +

∑
j [P̃n(i, j) +

Q̃n(i, j)] ≡ S̃n(i, i) � Sn(i, i). Consequently, the intra-layer rates remain bounded
throughout the RG procedure. Writing, e.g., equation (5) in the form �Sk−1 = −Pk−1S

−1
k Qk ,

we see that at least one of the sets of matrices {Pn} and {Qn} must tend to zero as c� → 0,
otherwise the matrices Sn would not remain bounded. Furthermore, it is clear that the
assumption on recurrence requires that both {Pn} and {Qn} must tend to zero if c� → 0. This
also implies that, in that limit, det Sn → 0 and � → �∗ = 0. So, as the RG transformation
progresses the inter-layer rates at the non-decimated layers are approaching zero without
limits.

For the study of various quantities close to the fixed point �∗ = 0, it is expedient to
define the following relation: f 	 g if lim�→0 f/g = 1. According to the above, we have
S̃k−1 	 Sk−1 and similarly, for the matrix S−1

n := S−1
n

/∥∥S−1
n

∥∥, S̃−1
k−1 	 S−1

k−1 holds. One
can easily show that the rows of S̃−1

n are asymptotically identical, i.e. S̃−1
n (i, j) 	 S̃−1

n (k, j)

for 1 � i, j, k � m, and the vectors formed from the rows tend to the stationary measure
π̃n of the isolated nth layer, i.e. S̃−1

n (i, j) 	 π̃n(j) for 1 � i, j � m, where π̃n is the
solution of the equation π̃nR̃n = 0 which fulfils the condition

∑
i π̃n(i) = 1. Although, the

layers were not assumed to be connected within themselves initially, after many decimations
they become almost surely connected due to the generated positive intra-layer transition
rates when eliminating adjacent layers. If it is the case, the measure π̃n is unique.
Introducing the matrices Pn := S−1

n Pn and Qn := S−1
n Qn, equation (3) can be written

as P̃k−1 − P̃k−1�k−1 = Pk−1Pk/�k with �k ≡ S̃−1
k−1 − S−1

k−1. Using equation (1) we
obtain that

∥∥S−1
k (Pk + Qk)

∥∥ = 1. The rows of S−1
k are asymptotically identical, therefore∥∥S−1

k Pk

∥∥+
∥∥S−1

k Qk

∥∥ 	 ∥∥S−1
k (Pk +Qk)

∥∥ = 1 and �k 	 ‖Pk‖+‖Qk‖. Furthermore, �k → 0 if

4
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� → 0, thus we obtain the asymptotical renormalization rule P̃k−1 	 Pk−1Pk/(‖Pk‖+‖Qk‖),
and we have a similar equation for Q̃k+1. Using that the rows of ‖Pk‖ are asymptotically
identical, we have ‖Pk−1Pk‖ 	 ‖Pk−1‖ · ‖Pk‖ and obtain finally

‖P̃k−1‖ 	 ‖Pk−1‖ · ‖Pk‖
‖Pk‖ + ‖Qk‖ , ‖Q̃k+1‖ 	 ‖Qk+1‖ · ‖Qk‖

‖Pk‖ + ‖Qk‖ . (10)

We see that these equations have the same form as those of the 1D RWRE in equation (9). The
physical interpretation of these results is clear. If � 
 1, the effective inter-layer rates are much
smaller than the effective intra-layer rates, thus the walker in the renormalized environment
spends very long time in a layer until it jumps to another one, so that its quasistationary
distribution within the layer is given asymptotically by π̃n. When the walker leaves the layer
it does not ‘remember’ at which site it entered the layer and irrespectively of this site, the
effective jump rates to the adjacent layer to the right and left are ‖P̃n‖ and ‖Q̃n‖, respectively.
Thus we may say that the model under study renormalizes asymptotically to a 1D RWRE.
In the course of the RG transformation, the normalization of the measure is obviously not
conserved, i.e.

∑′
(n,i) πn(i) < 1, where the prime denotes that the summation goes over the

active sites. Nevertheless, on a finite strip, the walker spends most of the time in a small
number of layers and the sum of πn(i) over almost all sites goes to zero in the limit L → ∞,
which is closely related to the Golosov localization [5]. At any stage of the RG transformation,
the layer with the maximal �n is decimated and �n

∑
i πn(i) can be interpreted, at least close

to the fixed point, as the probability current from the nth layer to the neighbouring ones. This
ensures that layers with smaller

∑
i πn(i), i.e. where the walker can be found with a smaller

probability, are decimated typically earlier in the course of the SDRG procedure. Thus, fixing
the length scale ξ > 1 and renormalizing a finite strip of length L > ξ to a strip of length
L′ = L/ξ , we expect that

∑′
(n,i) πn(i) → O(1) almost always if L → ∞. Now, if the correct

normalization of πn(i) in the renormalized strip is restored by dividing by
∑′

(n,i) πn(i), the
probability current along the strip is modified only by an O(1) factor. On the other hand, the
current is invariant under the RG transformation, thus assuming that ξ � 1, the RWRE on a
strip of length L has the same current up to an O(1) factor as an effective 1D RWRE of length
L′ ∼ L. This implies that the current of the RWRE on a strip must asymptotically scale with
the size as that of the 1D RWRE. Consequently, the inverse of the current, which gives the
mean time τ that the walker needs to make a complete tour on the strip, must scale with L
asymptotically just as in one dimension,

(ln τ)2 ∼ L. (11)

Next, we have a closer look on the RG equations (10) and determine the scaling relation
between � and ξ� by pointing out the asymptotic equivalence to an already solved problem.
In order to do this, we assume that the distributions of effective rates ‖P‖ and ‖Q‖ broaden
on logarithmic scale without limits as � → 0. This property, which can be justified
a posteriori, is characteristic of the so-called infinite randomness fixed points and ensures
the asymptotical exactness of the procedure [15]. As a consequence, at the layer to be
decimated, almost surely either ‖Pk‖/‖Qk‖ or ‖Qk‖/‖Pk‖ tends to zero if � → 0. In the first
case, � 	 ‖Pk‖ + ‖Qk‖ 	 ‖Qk‖ and the decimation rules read

‖P̃k−1‖ 	 ‖Pk−1‖ · ‖Pk‖
‖Qk‖ , ‖Q̃k+1‖ 	 ‖Qk+1‖, (12)

while in the second case � 	 ‖Pk‖ and

‖P̃k−1‖ 	 ‖Pk−1‖, ‖Q̃k+1‖ 	 ‖Qk+1‖ · ‖Pk‖
‖Pk‖ . (13)

5
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For the above transformation rules, it has been shown in [15] in the continuum limit that
the distributions of ‖P‖ and ‖Q‖ flow in the recurrent case (apart from some singular initial
distributions) to the strongly attractive self-dual fixed point with identical distribution of ‖P‖
and ‖Q‖: ρ∗(η) = e−η
(η), where η ≡ ln(�/‖P‖)/ ln(�0/�),�0 is the initial value of �

and 
(x) is the Heaviside step function. Furthermore, the asymptotic scaling relation between
ξ� and � reads

ξ� ∼ ln2(�0/�). (14)

Carrying out the RG transformation in a finite but long strip up to the last layer which
is indexed by l, the magnitude of the current can be written as |J | = |πl(P̃l − Q̃l)| ≈∑

i πl(i)|(‖Pl‖ − ‖Ql‖)| ∼ ∑
i πl(i)�l , where we used in the last step that for large L, ‖Pl‖

and ‖Ql‖ differ typically by many orders of magnitude. Taking into account that
∑

i πl(i) is
expected to remain finite for almost all environments in the limit L → ∞ and substituting L
for the length scale in equation (14) we arrive again at equation (11). From this scaling relation
we conclude that the typical displacement of the first coordinate x of the walker on an infinite
strip scales with the time in the recurrent case as x ∼ (ln t)2 for almost all environments.

3.2. Sub-linear transient phase

Now, we consider the case when the environment is still an independent, identically distributed
sequence but the random walk is transient. It is known for the 1D RWRE that if 0 < µ1 < 1,
where µ1 is the unique positive root of the equation [Q(1, 1)/P (1, 1)]µ1 = 1 and the over-
bar denotes averaging over the distributions of Q(1, 1) and P(1, 1), the displacement grows
sub-linearly as x ∼ tµ1 [1, 16]. In the analogous zero-velocity transient phase of the RWRE
on a strip, the matrices Pn and Qn must still renormalize to zero, and the asymptotical
transformation rules are given by equations (12)–(13). The analysis of these RG equations
in the continuum limit has been carried out in [17] and has yielded the asymptotical result:
ξ� ∼ (�/�0)

−µ. We thus conclude that the displacement grows as x ∼ tµ also for the RWRE
on a strip in this phase. For the 1D RWRE, µ = µ1, which is due to the fact that the energy
landscape defined by Un+1 − Un = ln[Qn+1(1, 1)/Pn(1, 1)] carries the full information on µ1

and even the approximative rules in equations (12)–(13) leave the energy difference between
active sites invariant (cf the method in [6]). For m > 1, equations (12)–(13) are valid only
asymptotically and the problem how the exponent µ is related to the initial distribution of
jump rates is out of the scope of this approach.

4. Discussion

We have presented in this work an SDRG scheme for the RWRE on quasi-one-dimensional
lattices, which incorporates also the RWRE with bounded non-nearest neighbour jumps. We
have made use of that by eliminating appropriately chosen groups of lattice sites, the topology
of the network of transitions remains invariant. We mention that there are special sub-networks
of transitions with positive rates which are invariant under the transformation: As can be seen
from equations (3)–(4), if the ith row or column of Pn or Qn is zero for all n, then this remains
valid also after an RG step. An example for m = 2 is the process with the only positive inter-
layer rates Pn(1, 1) and Qn(2, 2), which can be interpreted as a 1D persistent RWRE. We have
shown that the model renormalizes to an effective 1D RWRE and concluded that, although, the
finite-size corrections are strong (see [10]), Sinai scaling is valid asymptotically in the recurrent
case, while in the sub-linear transient regime the displacement grows as x ∼ tµ. Although,
the method is not appropriate for establishing an analytical relation between the non-universal

6
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exponent µ and the initial distribution of jump rates, the numerical implementation of the
exact RG scheme provides a more efficient tool for the estimation of µ than the direct solution
of equations (2).

When this work was finalized, a preprint by Bolthausen and Goldsheid appeared, in which
similar results are obtained in the recurrent case in a different way [18].
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